Example: The map-germs $y = x^2$ and $y = x^4$ at the point 0 of the real line are topologically equivalent. The germ $y = x^2$ is topologically (and even differentiably) stable at zero. The germ $y = x^4$ is differentiably (and even topologically) unstable at zero.

Two maps $f,g:\mathbb{R}^n \to \mathbb{R}^p$ are said to be **germ-equivalent** at $p \in \mathbb{R}^n$ if p is in the domain of both and there is a neighbourhood U of p such that the restrictions coincide: $f|_U = g|_U$; that is, if,

$$\forall x \in U, \ f(x) = g(x).$$

A map-germ or function-germ at a point p is an equivalence class of germ-equivalent maps. If η is such an equivalence class,

then any $f \in \eta$ is called a *representative* of η .

Notation Given a map $f: \mathbb{R}^n \to \mathbb{R}^p$ with $x \in \text{dom } f$, we denote the germ of f at x by $[f]_x$. In other words, $[f]_x$ is the set of all maps $g: \mathbb{R}^n \to \mathbb{R}^p$ with $x \in \text{dom } g$ and for which there is a neighbourhood U of x such that $f|_U = g|_U$.

Definition

We define a **singularity** of a smooth map $f : \mathbb{R}^n \to \mathbb{R}^p$ to be a point $x_0 \in \text{dom}(f)$ where the rank is not maximal (ie, not equal to $\min\{n, p\}$). If p = 1 (so scalar-valued functions), this means a point where all partial derivatives vanish².

A first step in the study of singularities is to introduce coordinates adapted to the situation.

Theorem Let $[f]_0: (\mathbb{R}^n,0) \to (\mathbb{R}^p,0)$ be a smooth map-germ at the origin, with $\mathrm{rk}_0(f) = k$. Then there are coordinates $u_1,\ldots,u_k,x_1,\ldots,x_{n-k}$ on \mathbb{R}^n and (y_1,\ldots,y_p) on \mathbb{R}^p , and a smooth map-germ $[g]_0: (\mathbb{R}^n,0) \to (\mathbb{R}^{p-k},0)$ with $\mathrm{d} g_0 = 0$ and g(u,0) = 0, such that $[f]_0$ takes the form, f(u,x) = (u,g(u,x)).

That is, in a neighbourhood of 0, a representative map f is given by

$$\begin{cases} y_i = u_i, & (i = 1, ..., k) \\ y_j = g_{j-k}(x, u) & (j = k+1, ..., p) \end{cases}$$

The ring of germs of smooth functions

Denote by \mathcal{E}_n the set of all germs at the origin of smooth functions on \mathbb{R}^n . It has a natural ring structure, given by addition and multiplication of functions as follows. Let f and g be smooth functions with 0 in their domains, and let U be any neighbourhood of 0 with $U \subset \text{dom } f \cap \text{dom } g$ (so that f and g are both defined on U) then the operations are

$$[f]_0 + [g]_0 := [f|_U + g|_U]_0$$
, and $[f]_0[g]_0 := [f|_U g|_U]_0$.

The ring \mathcal{E}_n has an important ideal \mathfrak{m}_n consisting of all smooth function germs vanishing¹ at the origin:

$$\mathfrak{m}_n = \{ f \in \mathcal{E}_n \mid f(0) = 0 \}.$$

given any collection f_1, \ldots, f_r of elements of \mathcal{E}_n , then the ideal generated by f_1, \ldots, f_r , which we write as $\langle f_1, f_2, \ldots, f_r \rangle$, is the set of all "linear combinations" of these generators, with coefficients taken from the ring. That is,

$$\langle f_1, f_2, \dots, f_r \rangle = \left\{ \sum_{j=1}^r a_j f_j \mid a_j \in \mathcal{E}_n \right\}.$$

Examples Let J be the ideal $J = \langle x^2 + x^3 \rangle \subset \mathcal{E}_1$, and $I = \langle x^2 \rangle$.

A short calculation shows that I = J. Indeed, $x^2 + x^3 = (1+x)x^2 \in I$ so that $J \subset I$, and moreover (1+x) is invertible in \mathcal{E}_1 (because it is not in \mathfrak{m}_1) and so $x^2 = (1+x)^{-1}(x^2+x^3) \in J$, so $I \subset J$. So we have J = I.

Proposition Let $\mathfrak{m}_n = \langle x_1, x_2, \ldots, x_n \rangle$ and

Write $\mathbb{R}^n = \mathbb{R}^a \times \mathbb{R}^b$ (with a + b = n), and use coordinates $(x_1, \dots, x_a, y_1, \dots, y_b)$. The ideal $I = \{f(x, y) \in \mathcal{E}_n \mid f(0, y) \equiv 0\}$ of functions vanshing on \mathbb{R}^b satisfies

$$I = \langle x_1, x_2, \ldots, x_a \rangle$$
.

Hadamard's lemma is obtained from this by putting b = 0, in which case a = n and $I = \mathfrak{m}_n$.

Powers of the maximal ideal are defined inductively: for $r \geq 2$,

$$\mathfrak{m}_n^r := \mathfrak{m}_n.\mathfrak{m}_n^{r-1}.$$

Corollary 3.6 The germ $f \in \mathcal{E}_n$ is in \mathfrak{m}_n^r if and only if f and all of its partial derivatives of order less than r vanish at the origin.

Rings and jets The k-jet of a function germ is its kth order Taylor series. That means that starting with the infinite Taylor series, we ignore all terms of degree greater than k It follows that one can identify the k-jet of a germ $f \in \mathcal{E}_n$ with the image of f under the projection π_k , where

$$\pi_k: \mathcal{E}_n \to \mathcal{E}_n/\mathfrak{m}_n^{k+1}$$

is the ring homomorphism, with kernel \mathfrak{m}_n^{k+1} .

Newton diagram

The skeleton of the Newton diagram for \mathcal{E}_2 is the lattice $\mathbb{N} \times \mathbb{N}$ (where \mathbb{N} includes 0) of points in \mathbb{R}^2 with non-negative integer coefficients. Each point of the lattice represents a monomial, with (a,b) representing $x^ay^b \in \mathcal{E}_2$. See Figure 3.1(a). More generally, for \mathcal{E}_n it is the lattice \mathbb{N}^n , with (a_1,a_2,\ldots,a_n) representing the monomial $x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$.

Figure 3.1: Newton diagrams for a few ideals

Suppose now that I is an ideal generated by a single monomial $I = \langle x^a y^b \rangle$. Then every monomial $x^c y^d \in I$ if and only if $c \geq a$ and $d \geq b$, so I contains all the monomials corresponding to (c,d) above and to the right of (a,b). So we shade that region of the lattice. See Figure 3.1(b) for the ideal $\langle x^2 y^3 \rangle$. Figure 3.1(c) shows the Newton diagram for the ideal \mathfrak{m}_2^4 .

An alternative way of depicting Newton diagrams is shown below.

Ideals of finite codimension

Definition 3.8 An ideal I is of **finite codimension** if \mathcal{E}_n/I is a finite dimensional vector space.

This means that there is a finite dimensional vector subspace V of \mathcal{E}_n such that $\mathcal{E}_n = V + I$, so any germ $f \in \mathcal{E}_n$ can be written as f = g + h with $g \in V$ and $h \in I$.

Example 3.9 The maximal ideal \mathfrak{m}_n is of finite codimension in \mathcal{E}_n because

$$\mathcal{E}_n = \mathfrak{m}_n + \mathbb{R}$$
.

So $V = \mathbb{R}$. This is because for any $f \in \mathcal{E}_n$ one has $f(0) \in \mathbb{R}$ and we let \bar{f} be the germ $\bar{f} = f - f(0)$ which is in \mathfrak{m}_n . Then f can be written as

$$f = \bar{f} + f(0).$$

Proposition 3.10 An ideal I is of finite codimension if and only if there is $r \in \mathbb{N}$ such that $\mathfrak{m}_n^r \subset I$.

Lemma 3.11 (Nakayama) Let I, J be ideals in \mathcal{E}_n with I finitely generated. Then

$$I \subset J + \mathfrak{m}_n I \Rightarrow I \subset J$$
.

Example 3.12 We show $\mathfrak{m}_2^5 \subset \langle x^3, y^3 + x^2y^2 \rangle$. Let $I = \mathfrak{m}_2^5$ and $J = \langle x^3, y^3 + x^2y^2 \rangle$. We want to show that $I \subset J + \mathfrak{m}_2 I$, which is $J + \mathfrak{m}_2^6$, and then apply Nakayama's lemma. Check each generator of I in turn:

$$\begin{split} x^5 &= x^2(x^3), \quad x^4y = xy(x^3), \quad x^3y^2 = y^2(x^3), \\ x^2y^3 &= x^2(y^3 + x^2y^2) - x^4y^2, \quad xy^4 = xy(y^3 + x^2y^2) - x^3y^3, \\ y^5 &= y^2(y^3 + x^2y^2) - x^2y^4. \end{split}$$

The first three show directly that the monomials belong to J, while the others are all written in the form $p = q(y^3 + x^2y^2) - r$ with $r \in \mathfrak{m}_2^6$, so showing that $p \in J + \mathfrak{m}^6$. By Nakayama's lemma we are done.

Codimension

Definition 4.3 A germ in \mathcal{E}_n is said to be of *finite codimension* if the Jacobian ideal is of finite codimension in \mathcal{E}_n . If f has a critical point at the origin then $f \in \mathfrak{m}_n^2$ and in this case $Jf \subset \mathfrak{m}_n$ and one says its *codimension* is

$$cod(f) := dim\left(\frac{\mathfrak{m}_n}{Jf}\right).$$

This number is finite if and only if f is of finite codimension.

- Examples 4.4 (i). If $f = x_1^2 + x_2^2 + \cdots + x_n^2 \in \mathcal{E}_n$ then $Jf = \mathfrak{m}_n$, so $\operatorname{cod}(f) = 0$.
- (ii). For $f = x^3 + y^3 \in \mathcal{E}_2$ one has $Jf = \langle x^2, y^2 \rangle$; a basis for \mathfrak{m}_2/Jf can be taken to be $\{x, y, xy\}$ so f has codimension 3.
- (iii). Let $f(x,y) = x^2y$. Then $Jf = \langle xy, x^2 \rangle$ and f is of infinite codimension, as for all k > 0, $y^k \notin Jf$.