Example: The map-germs y = x? and y = x* at the point 0 of the real line
are topologically equivalent. The germ y = x? is topologically (and even
differentiably) stable at zero. The germ y = x* is differentiably (and even

topologically) unstable at zero.

Two maps f,g : R" — R? are said to be germ-equivalent at p ¢ R"
if p is in the domain of both and there is a neighbourhood U of p such
that the restrictions coincide: f lv = 9| that is, if,

Vz e U, f(z)= g(x).
A map-germ or function-germ at a point p is an equivalence class of germ
equivalent maps. If 5 is such an equivalence class,
then any f € 5 is called a representative of .

Notation Given a map f: R" — R? with = € dom f, we denote the germ

of f at = by [f],. In other words, [f], is the set of all maps g : R" — R”
with = € dom g and for which there is a neighbourhood U of = such that

f|U = 9|y



Definifion we define a singularity of a smooth map f : R - R” to be a point
zg € dom(f) where the rank is not maximal (ie, not equal to min{n, p}).

If p = 1 (so scalar-valued functions), this means a point where all partial
derivatives vanish?.

A first step in the study of singularities is to introduce coordinates
adapted to the situation.

Theorem Let [f], : (R",0) — (R”,0) be a smooth map-germ at the
origin, with rky( f) = k. Then there are coordinates uq, ..., up, ry, ..., Ty _}
on R" and (y1....,y,) on R?, and a smooth map-germ |[g|, : (R",0) —
(RP—*,0) with dgo = 0 and g(u,0) = 0, such that [f], takes the form,

flu,z) = (u,g(u,z)).

That is, in a neighbourhood of 0. a representative map f is given by
{w=uh (i=1,...,k)

y; =gi—k(z,u) (Gj=k+1,...,p)



The ring of germs of smooth
functions

Denote by &, the set of all germs at the origin of smooth functions on
R™. It has a natural ring structure, given by addition and multiplication

of functions as follows. Let f and g be smooth functions with 0 in their
domains, and let U be any neighbourhood of 0 with U C dom f Nndomg

(so that f and g are both defined on U) then the operations are
[f]O + [g]O = [fl U 3 gl U:lo‘ and [f]()[g]() = [fll_,rglu] 0'

The ring &, has an important ideal m,, consisting of all smooth func-
tion germs vanishing' at the origin:

m, = {f €& | F(0) =0}.

of these generators, with coefficients taken from the ring. That is,



(fi,fo,..., fr) = {Zajfj | a; ng} :

j=1

Examples Let J be the ideal J = (2 + 2*) C &, and I = (z?).
A short calculation shows that I = J. Indeed, z2+2® = (1+x2)2? €
I so that J C I, and moreover (1 + z) is invertible in &; (because
itisnotinmy)and so z* = (1+z) '(z*+2*) € J.sol C J. So
we have J = 1.

Proposition Let m, = (z, zo, ..., z,). and

Write R™ = R® x R (with a + b = n), and use coordinates

(Z1,...,Za,Y1,.... ). The ideal I = {f(z,y) € &, | f(0,y) = 0} of functions
vanshing on R" satisfies

I=(z, 29, ..., %,).
Hadamard's lemma is obtained from this by putting » = 0, in which
case a=n and I = m,,.

Powers of the maximal ideal are defined inductively: for r > 2,

m’ =m,.m. "'



Corollary 3.6 Thegerm f € &, is inm], ifand only if f and all of its partial
derivatives of order less than r vanish at the origin.

Rings and jets The k-jet of a function germ is its kth order Taylor series. That means

that starting with the infinite Taylor series. we ignore all terms of
degree greater than k It follows that one can identify the k-jet of a germ f € £,, with

the image of f under the projection 7., where

k+1

n

Trk:gn —)Sn/m

is the ring homomorphism, with kernel m*+1,

Newton diagram

The skeleton of the Newton diagram for &, is the lattice N x N (where
N includes 0) of points in R® with non-negative integer coefficients.
Each point of the lattice represents a monomial, with (a, b) representing
xy? € &. See Figure 3.1(a). More generally, for £, it is the lattice N",

ai .a2

with (a;,a2,...,a,) representing the monomial z{'z5% - - -z,

n



>

(a) The skeleton of the (b) Newton diagram for (c) Newton diagram for
Newton diagram for &£; the 1deal (z?y3) the 1deal m3

Figure 3.1: Newton diagrams for a few ideals

Suppose now that I is an ideal generated by a single monomial | =
(z*y"). Then every monomial z°y? € I if and only if ¢ > a and d > b, so
I contains all the monomials corresponding to (¢,d) above and to the
right of (a,b). So we shade that region of the lattice. See Figure 3.1(b)
for the ideal (z%y*). Figure 3.1(c) shows the Newton diagram for the
ideal m3.

An alternative way of depicting Newton diagrams is shown below.
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Ideals of finite codimension

Definition 3.8 An ideal I is of finite codimension if £, /I is a finite di-

mensional vector space.

This means that there is a finite dimensional vector subspace V' of

v

Ensuch that &, =V + I, soany germ f € £, can be writtenas f =g+ h

withgeV and h € 1.



Example 3.9 The maximal ideal m,, is of finite codimension in &,
because
En=mMm, +R.

So V = R. This is because for any f € £, one has f(0) € R and we let
f be the germ f = f — f(0) which is in m,,. Then f can be written as

f=f+ f(0).

Proposition 3.10 An ideal I is of finite codimension if and only if there is
r € N such thatm!, C 1.

Lemma 3.11 (Nakayama) Let I,J be ideals in &, with I finitely gener-

ated. Then
IcJ+m, I=1CJ.



Example 3.12 We show m3 C (z°,y* + z%y?). Let ] = mj and J =
(z*,y* + 2%y*). We want to show that I C J + mal, which is J + m$,
and then apply Nakayama's lemma. Check each generator of I in
turn:

W

),

I2y3 — IQ(yf} £ I‘Zy’.’) . ;r"tyg’ .’ry” — _ry(yS +x2y2) . ISyS,

2® =2°(z%), aly=ay(a®), 2y’ =4’z

5 2/ 3 2 9 2 4

Yy =y (y° +27y°) —z°y".
The first three show directly that the monomials belong to J, while
the others are all written in the form p = ¢(y* + 22y?) —r with » € m§,
so showing that p € J + m®. By Nakayama's lemma we are done.

Codimension

Definition 4.3 A germ in &, is said to be of finite codimension if the
Jacobian ideal is of finite codimension in &,,. If f has a critical point
at the origin then f € m2 and in this case Jf ¢ m, and one says its

codimension is
cod(f) := dim ('}‘—;) .
This number is finite if and only if f is of finite codimension. v



Examples4.4 (). If f = 2} + 23+ --- + 22 € &, then Jf = m,, so
cod(f) = 0.

(). For f =2* + y* € & one has Jf = (z°, y°); a basis for m,/Jf can
be taken to be {z,y,zy} so f has codimension 3.

(i11). Let f(z.y) = z2y. Then Jf = (zy, J:2) and f is of infinite codi-
mension, as for all k >0, v* ¢ Jf.



